星团

(山谷)

Feedback in the formation of star clusters

星团 are objects of tremendous importance, both because all stars form in clusters, and because clusters are extremely bright, making them visible at cosmological distances. Understanding the formation and early evolution of star clusters, and the way in which they consume or expel their reserves of gas and
become visible, is thus vital. Stellar feedback in the form of jets/outflows, ionising radiation, winds and supernovae is a crucial ingredient in understanding this process and we are studying the effects of some of these feedback mechanisms in numerical simulations of turbulent star-forming clouds to answer the big questions of whether feedback is able to terminate star formation and clear clusters of gas.

The image shows the results of a parameter-space exploration in which the impact of ionisation and wind feedback from their own stars is modelled on molecular clouds of a range of masses, sizes and therefore escape velocities. We see that the lower-mass clouds with low escape velocities (towards the top-left of the image) are severely damaged by feedback, leaving their clusters clear of gas and slowing star formation. By contrast, the more massive clouds with higher escape velocities (towards the bottom-right), are largely immune to these kinds of
反馈。

Optical emergence of star clusters

500 Internal Server Error

Internal Server Error

The server encountered an internal error and was unable to complete your request. Either the server is overloaded or there is an error in the application.

Comparison of numerical simulations and observations

The increased sophistication of numerical simulations of star formation and the wealth of data produced by observatories such as Spitzer, Herschel, ALMA and the VLT demand a framework for the detailed and objective comparison of these two very different kinds of dataset.

The first step is to create synthetic observations of simulations, using sophisticated radiative transfer codes to determine how the simulated clouds would appear to a given telescope and instrument, if they were real objects at a chosen distance seen against a realistic background.

The image shows synthetic observations of a single simulated cloud, as it would appear at two infrared wavelengths to Spitzer (first two panels), and at five sub millimetre wavelengths to Herschel (remaining panels), when placed at 3kpc in front of a realistic background field. We see that, as we go to longer and
longer and wavelengths, it becomes more and more difficult to distinguish the model cloud from the background.